© ACM, 2010. This is the authors’ version of theriolt is posted here by permission of ACM for yopersonal use. Not fol
redistribution. The definitive versicwill be published in the Proceedings of Web!' 10.

Mashup Environments in Software Engineering

Lars Grammel, Christoph Treude, Margaret-Anne Storey
Department of Computer Science, University of Victoria
lars.grammel@gmail.com, ctreude@uvic.ca, mstorey@uvic.ca

ABSTRACT

Too often, software engineering (SE) tool reseasciocused on
creating small, stand-alone tools that addresdyranederstood
developer needs. We believe that research shosiead provide
developers with flexible environments and interajde tools,
and then study how developers appropriate andr tdikese tools
in practice. Although there has been some priokveor this, we
feel that flexible tool environments for SE have pet been fully
explored. In particular, we propose adopting theb\Zed idea of
mashups and mashup environments to support SEtnaets in
analytic activities involving multiple informatiosources.

Categoriesand Subject Descriptors
D.2.6 [Software Engineering]: Programming Environments —
Integrated Environments

General Terms
Human Factors

Keywords

Mashup, software engineering

1. INTRODUCTION

Too often, software engineering (SE) tool reseasciocused on
creating small, stand-alone tools that addresdyranederstood
developer needs. Even worse, many of those toels\aluated in
artificial laboratory settings, if evaluated at.allhus, our
understanding of the real developers’ needs ardobfsupport to
address them in industrial environments is fairyited.

In contrast, SE practitioners implement their owragmatic
solutions using informal mechanisms such as dasbbofr].

When implementing these solutions, they are ofteaware of
related research, and vice versa, researcherdtareunaware of
solutions created by practitioners. Overcoming tigortunate
disconnect could help propel both SE research ahgractice.
Studying these ad-hoc solutions could provide \@kiansights
into the needs of software developers and the desgigce of tool
support, which could in turn lead to improved SKEimnments.

Permission to make digital or hard copies of alpart of this work for
personal or classroom use is granted without feeighed that copies are
not made or distributed for profit or commercialvadtage and that
copies bear this notice and the full citation oe finst page. To copy
otherwise, or republish, to post on servers oredistribute to lists,
requires prior specific permission and/or a fee.

Web2SE’'10May 2-8, 2010, Cape Town, South Africa.

Copyright © 2010 ACM 978-1-60558-975-6/10/05 ... $iMD.

We propose that research should provide developiénsflexible

environments and interoperable tools, and we p®posstudy
how developers appropriate and tailor these toolractice.
Although there has been some prior work on thig, [@], we feel
that flexible tool environments for SE have not peten fully
explored. Modern, plug-in based IDEs such as Eeliasd Jazz
have been a major step towards this goal, and lready
sparked many research projects that have found tiey into

daily SE work. However, lightweight automation @velopment
tasks and flexible composition of different infotioa sources
would be useful in many daily SE activities.

This flexibility cannot be provided by plug-ins addvelopment
perspectives in current IDEs. In this paper, weigom how
mashups could help with flexible and lightweightrgasition of
SE information sources for analytical activities.

2. INFORMATION MASHUPSIN SE

Many activities in SE require searching, collectargl analyzing
different kinds of information [2]. For example, tineir daily code
investigation tasks, software developers use a etyariof

information sources such as source code, issuleetigcand email
[4]. The information sources are usually accesdadugh a
variety of different tools and ways [4, 7]. Thickeof integration
puts the burden of integrating the information be tleveloper
[4], and can lead to disorientation through thraghil] and to
losing track of relevant information pieces [5].uBh there is a
need for supporting the developers in collecting amalyzing
information in an integrated, yet flexible fashid4, 5, 6].

However, current tool support is limited even faymbining

different pieces of information from a single sauf6].

We propose to adopt the Web 2.0 idea of mashupsvasthup
development environments [3] to support SE practérs in
analytic activities. Mashups are a lightweight ammh of
combining several data sources that are exposedebshased
services [3]. We believe that using appropriatedshua
environments for analytical tasks in SE is benafidiecause such
environments could enable developers to rapidlyateretask-
oriented, situational information mashups justime. Such light-
weight mashups are easily modified as insights fieemanalyzed
information are gained, which facilitates analytiaativities. By
having mashups as first class artifacts, they eashiared between
developers, tailored by other developers to sweirtimdividual
preferences and reused in different circumstances.

We think that SE practice will benefit from usingashups by
improved automation, collaboration, traceability, nda
documentation. For SE research, mashups are bahdfecause
they can provide a whole new set of artifacts tzet be analyzed

to gain insights into a broad range of software iregring
activities. This increased tangibility of SE progestifacts can
help bridge the gap between research and industry.

3. RELATED WORK

Supporting developers in leveraging multiple infation sources
has recently received some attention by the SE arelse
community. Holmes and Begel have developed Deegllisense,
a tool for summarizing historical information abadurce code
based on change sets, email, issue tracking datfdgtHowever,
while Holmes and Begel highlight the importancelexibility of
interaction, their tool cannot be tailored by tlewvelopers beyond
arranging the layout of the three different vieassd information
seeking has to start from source code elementsHdfz and
Murphy created a tool that allows developers ton@ngjuestions
by flexibly choosing different kinds of informatioand their
composition order [2]. While this tool provides radtexibility, it
is a single IDE widget and does not support stoifagstate or
switching and combining different views such aselines [2].
Based on their study of how developers seek, relate collect
information in software maintenance activities, &wal. propose
creating a ‘conceptual workspace’ that supportsecthg task-
related information fragments and seeing them bidside [5].
We believe that such a flexible information workspaould be
created by using mashup technologies, as we wiiineunext.

4. A MASHUP ENVIRONMENT FOR SE

We are developing an information mashup environmibratt

enables developers to easily collect and analyipenration from

different data sources and thus aids their exployadnalytical
activities. It will support the following featurefDE integration
for adding information fragments; information viimation

widgets; interactive construction of mashups usireg and drop;
storing and sharing of mashups; export of configurédgets to
dashboards; and tracking user interaction for hisgyovenance
and traceability. A mockup scenario in which a deper

explores which work items and which source codelated to the
user interface polishing that took place beforea@omrelease is
shown in. The arrows indicate one way of navigatitg

developer might use during the analysis.

The architecture of the information mashup envirentnis
outlined in Figure 2. It is implemented using theo@le Web
Toolkit (GWT), and consumes data exposed by weledad|s.
By building adapters, other information sources banused as
well. The client part runs in modern web browsdrs. provide
IDE integration, we are planning to create a plugfor the
Eclipse platform.

5. STUDYING MASHUP ENVIRONMENTS
We believe that mashup environments, besides heseful for
SE practitioners, would provide valuable data farr8searchers.
For example, mining the mashup construction hiegocan bring
insight into how programmers explore artifacts inalgtical
activities. We think that data mining and field dies of mashup
environment usage provide promising avenues farréutesearch.
On a higher level, we need to research how to deSk mashup
environments such that we can collect the dataetéat these
studies, and how security should be handled in SisShop
environments when integrating company-externaluess.

Wark items Source Code

Figure 1: Mockup scenario with work item tags over time (1),
work items (2), sour ce code (3) and dependencies (4)

Browser IDE Dashboards

Consuming
mashup widgets

Mashup Environment + Adding information
Constructing & Working fragments to mashups
with Mashups + Consuming mashup widgets

I + Embedded browser

i '

Server

Workspace Storage; Data Sources Access;
IDE-mashup coordination; widget export

Clients

Server

adapter

adapter

Information Repository with web- Information repository Information repository
Repositories based API

Figure 2: Architecture of infor mation mashup environment

6. REFERENCES

[1] B. de Alwis and G. C. Murphy. Using visual mombem to
explain disorientation in the eclipse ide MbHCC '06:
Proc. of the Symp. on Visual Languages and Humaririce
Computing pages 51-54, Washington, DC, 2006. IEEE.

[2] T. Fritz and G. C. Murphy. Using informatiorafiments to
answer the questions developers askCBE '10: Proc. of
the 32nd Intl. Conf. on Software Engineetibgw York,
2010. ACM. To appear.

[3] L.Grammel and M.-A. Storey. An End User Pecijpe on
Mashup Makers. Technical Report DCS-324-IR, Uniwgrs
of Victoria, September 2008.

[4] R.Holmes and A. Begel. Deep intellisense: @l for
rehydrating evaporated information.MSR '08: Proc. of the
Intl. working Conf. on Mining software repositorigmges
23-26, New York, 2008. ACM.

[5] A.J.Ko, B. A. Myers, M. J. Coblenz, and H. AMung. An
exploratory study of how developers seek, relaid,@llect
relevant information during software maintenansksa
IEEE Trans. Softw. Eng32(12):971-987, 2006.

[6] J. Sillito, G. C. Murphy, and K. De Volder. Aisig and
answering questions during a programming chande tas
IEEE Trans. Softw. Eng34(4):434-451, 2008.

[7] C. Treude and M.-A. Storey. Awareness 2.0: Biguaware
of projects, developers and tasks using dashbeadiseeds.
In ICSE '10: Proc. of the 32nd Intl. Conf. on Software
Engineering New York, 2010. ACM. To appear.

