
Attracting the Community’s Many Eyes: an Exploration of

User Involvement in Issue Tracking
Lars Grammel
University of Victoria
Victoria, BC, Canada

Lars.Grammel@gmail.com

Holger Schackmann
RWTH Aachen University
Aachen, Germany

schackmann@swc.rwth-
aachen.de

Adrian Schröter
University of Victoria
Victoria, BC, Canada

schadr@uvic.ca

Christoph Treude
University of Victoria
Victoria, BC, Canada

ctreude@uvic.ca

Margaret-Anne Storey
University of Victoria
Victoria, BC, Canada

mstorey@uvic.ca

ABSTRACT
A community of users who report bugs and request features

provides valuable feedback that can be used in product
development. Many open source projects provide publicly

accessible issue trackers to facilitate such feedback. We compare
the community involvement in issue tracker usage between the

open source project Eclipse and the closed source project IBM

Jazz to evaluate if publicly accessible issue trackers work as well
in closed source projects. We find that IBM Jazz successfully

receives user feedback through this channel. We then explore the

differences in work item processing in IBM Jazz between team
members, project members and externals. We conclude that

making public issue trackers available in closed source projects is

a useful approach for eliciting feedback from the community, but
that work items created by team members are processed

differently from work items created by project members and

externals.

Categories and Subject Descriptors
K.6.3 [Software Management]: Software process

General Terms
Human Factors

Keywords
Open source, users, issue tracking

1. INTRODUCTION AND MOTIVATION
Involvement of the user community during software

development can lead to creating higher quality software that is

more appropriately tailored to the users’ needs [16, 18]. For
software companies that are seeking to improve their products, it

is therefore important to gain more feedback from their users.

Such community involvement can work well in major open source

projects (e.g. Eclipse [8]). This raises a question: Can a similar
degree of community involvement also be achieved for closed

source offerings?

In order to solicit input from the user community, IBM has
introduced a new development approach in the Jazz1 project, that

they call “open commercial development” [7]. Jazz is a team

collaboration platform for integrating work across the phases of
the software development lifecycle. While it is based on the open

source project Eclipse, Jazz components, such as the Rational

Team Concert IDE, are commercial and closed source. In contrast
to a closed source approach, however, the Jazz community can

download integration builds, see the development process, and

participate in forums and issue trackers. Also, community
members have insights into the release and iteration plans, as well

as access to work items, such as bug reports, tasks, or change
requests. Work items can be created and discussed by community

members. Every user has access to the team wikis, blogs and

tutorials, and can discuss issues or request help via forums. In
other words, the community members, especially beta-testers, are

aware of the project progress at any time, even though they are not

allowed to modify source code. The goal of the open commercial
development is to leverage some of the strengths of the open

source model, e.g. using the comments and recommendations

from the community to influence development.
It is not well understood yet whether the community embraces

this type of projects and whether companies are successful in

benefiting from the community's many eyes. Our study aims to
close this gap by analyzing the degree of community involvement

in the issue tracking systems of Jazz [7]. In order to draw

comparisons to an open source project, we use the Eclipse project
as a baseline. Eclipse is not only one of the largest open source

projects, but it is also one of the most intensively studied [2, 4, 5].

Eclipse is used as a baseline since both projects are in the domain
of development environments. Moreover many Jazz developers

are former Eclipse developers. This reduces threats to validity to

this study given by different working styles of the development
teams.

The remainder of this paper is structured as follows: Section 2

provides an overview of the related work. It is followed by a
description of our research questions and methodology (Section

1 http://jazz.net

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

Conference’10, Month 1–2, 2010, City, State, Country.

Copyright 2010 ACM 1-58113-000-0/00/0010…$10.00.

3). In Section 4, we present our results. We then discuss the

implications of these results in Section 5. Next, we describe
threats to validity and how we mitigate them (Section 6). Finally,

we present our conclusions and ideas for future work (Section 7).

2. RELATED WORK

Issue trackers in open source projects such as Eclipse, Mozilla,
and Apache represent a well studied source of information.

Studies leveraging this archive of community knowledge [14] had

different goals such as assessing the quality of and evaluating the
relations between different issue reports [2, 19].

Bettenburg et al. [2] measured the quality of issued bug reports

and studied the difference between the expectations of developers
and reporters on its quality. Hooimeijer and Weimer [12]

considered how resolution time can be used as a quality indicator

for bug reports. Sandusky [19] investigated the connections
between different issue reports and how the community creates

these connections (e.g. dependencies or duplicate relations) over

time.
Several studies investigated the role changes of open source

community members using data from issue trackers and mailing

lists. They found that people enter the community and evolve
from users to developers, but also become inactive and drop out

of the ranks of developers [25, 24, 6]. The frequency of changes
depends on the type of community structure. Structures ranging

from “monarchies” to “democracies” [17] and from hierarchical to

dynamic [18, 3] have been observed within open software
communities.

Recent studies [1, 21, 13, 10] focused on the role of users in

open source communities. This research concludes that users are a
vital part of open source software communities because they drive

the software project and its evolution as a whole [13, 1]. Besides

influencing the project evolution towards their needs [1], users are
also rewarded by fast replies to support requests. Developers also

acknowledge the important role of users [21]. Although this

research has shown interest in open source users and developers,
we still need to improve our understanding of the interaction

between developers and users within a project.

While the general importance of involving the community in
software projects is clear, their participation in issue tracking is

more controversial. For the same software system (Firefox web

browser), Van Liere finds that large communities of bug reporters
reduce the time needed for defect resolution [22], but Ko and

Chilana report evidence that the user community reports “non-

issues that devolved into technical support, redundant reports with
little new information, or narrow, expert feature requests” [15].

Further research is necessary to understand when and how the

community should be involved in issue tracking and how it should
be coordinated with technical support.

Many software companies, including major vendors such as
IBM, Sun, and Microsoft, support various open source projects

[23]. Despite their familiarity with the transparency of open

source development, Jazz is, to our knowledge, one of the first
major attempts to bring a similar transparency in issue tracking to

commercial software development. We are not aware of any other

studies that compare the community involvement in issue tracking
between open source and commercial development.

3. METHODOLOGY
This section identifies our research questions as well as the

methods we used to answer these questions.

3.1 Research Questions
The research questions below cover the main themes of our

study: the community involvement in Jazz compared to the

community involvement in the open source project Eclipse, and

potential differences in the processing of Jazz work items created
by members outside of IBM. In this study, we measure community

involvement in issue tracking as the number of comments made by
community members, the number of work items created by

community members, and the number of involved community

members. Our detailed research questions are:

1. What is the degree of community involvement in issue
tracking in the open commercial project Jazz?

a. What is the absolute community involvement in Jazz?

b. What is the community involvement in Jazz relative to
the developer involvement?

c. What is the average involvement of an active

community member in Jazz?

2. Is there a similar degree of community involvement in

Eclipse and Jazz?

3. Are work items created by community, project and team
members (See 3.2 community status distinction) processed

differently in the open commercial project Jazz?

a. Do the amounts of communication differ?

b. Do the assignment and processing times differ?
c. Do the reopened rates differ?

We focus on Jazz for the last research question because there
are differences in the issue tracking between Jazz and Eclipse that

prevent a cross-comparison, and our main focus is to understand
the community involvement in issue tracking in open commercial

development.

3.2 Methodology
Our study follows a case study design. We divide the

individuals active in development and issue tracking into team

members, project members, and community members. Then, we

compare the amounts of involvement in both issue creation and
commenting on issues for these three groups. This analysis also

enables us to compare the community involvement in the open

source project Eclipse to the open commercial project Jazz.
Moreover, we analyze the average assignment and processing

times of work items as well as the average amount of

communication related to work items.

Community Status Distinction. Measuring the community

involvement requires determining the size of the community and

distinguishing participants according to their role in the
community. As our focus lies on issue tracking, we only count

individuals who are actively participating in the issue trackers for

the selected components during the selected time periods. For
these individuals, we distinguish between 3 groups:

• Team Members (TM): members of the component

development team.

• Project Members (PM): members of the project (i.e. Jazz,

Eclipse) who are not team members of the component under
evaluation.

• Community Members (CM): those who actively participate

in issue tracking and who are neither team nor project
members.

For Eclipse, lists with developers2 and former developers3 are

available on eclipse.org. Moreover, the project dash4 provides
lists of committers for each Eclipse component based on

automatically collected information from the source code

repository. We found that the latter information is more accurate.
Therefore, we identified team members by manually resolving the

source code repository usernames to Eclipse Bugzilla user IDs.

Alias names were also resolved manually. Resolving the Bugzilla
user IDs of all Eclipse project members was not feasible due to

inconsistencies of real user names in the database. Therefore, we

considered Eclipse Bugzilla users with “ibm.com” or “oti.com”
email addresses as project members. This can be justified since

95% of the lines of change in the Eclipse project in the years

2001-2003 have been contributed by IBM and former OTI
developers (according to analysis results of Eclipse dash). For

Jazz, lists of all project members as well as of the team members

of each component are available in the Jazz repository.

Time Period Selection. We have chosen the following

evaluation time periods with the goal of selecting work items from

comparable project phases for analysis. This reduces the risk that
the project phases influence our results in an unanticipated way.

For Jazz, we evaluated the time period from the month after the
Jazz project became open commercial to the month in which

Rational Team Concert 1.0 was released. This is the time period

from December 2006 to June 2008 (19 months).
For Eclipse, we analyzed two different time intervals, both

beginning when Eclipse became open source and Eclipse 1.0 was

released in November 2001. The first time interval ends in June
2002 (7 months), the month in which Eclipse 2.0 was released.

The reason for choosing this interval was to have intervals that

end at releases and thus do not include work item activity that is
caused by post-release bugs. The second time interval ends in

June 2003 (19 months), the month in which Eclipse 2.1.1 was

released. This time interval was chosen because it has the same
length as the time interval that was evaluated for Jazz.

Component Selection. In order to reduce the risk that project

size, topic or other project-specific peculiarities influence our
results, we have chosen several components from the Eclipse and

Jazz projects which are comparable in terms of numbers of

contributors, maturity and goal. Each component has its
development team.

For Eclipse, we have chosen the components from the Eclipse
project list5 and the component status in 2002. We excluded

components that started after 2001, that were too small, or that

had less than 10 contributors. We also excluded components that
had more than 30 contributors, because the components in Jazz

have fewer contributors. JDT was included as it had 30 team

members active in the issue tracker between December 2001 and
June 2003. Because there were no components in Jazz with

comparable development topics, we also excluded modeling,

runtime, and technology. The following three Eclipse components
met our requirements:

• Java Development Tools (JDT)

• Plugin Development Environment (PDE)

2 http://www.eclipse.org/projects/lists.php?list=allbyproject
3 http://www.eclipse.org/projects/committers-
alumni.php?sort=name

4 http://www.eclipse.org/dash/
5 http://www.eclipse.org/projects/lists.php?list=allbyproject

• C/C++ Development Tooling (CDT)

For Jazz, we excluded all components that have fewer than 10

contributors, that are too small or new, that are too generic, or that

are not focused on development. The following four Jazz
components met our requirements:

• Work Item (WI): support for managing defect reports, feature

requests, and other development tasks

• Source Control (SC): version control system

• Process (P): process support foundations

• Repository (R): server-side architecture, low-level client-

side API

Data Retrieval and Analysis. Instead of developing custom

scripts for retrieving the data from the Eclipse Bugzilla database
and the Jazz database respectively, we applied a more general

approach that is supported by the open source tool

BugzillaMetrics6. The tool offers a generic evaluation algorithm
for metrics on change request data and is adaptable to different

underlying data sources [9]. Metrics can be specified in a

declarative language. Basic language constructs are filters for
attributes and events in the life cycle of a change request. These

filters can then be combined with calculations like counting

certain events or determining the length of a time interval in the
life cycle of an issue report. Hence, metrics can be specified at a

higher abstraction level, which simplifies development and

validation of metrics [20]. Moreover, this approach made it easier
to ensure comparability of the metric definitions used for Jazz and

for Eclipse.

We analyzed the Eclipse data based on a snapshot of the
Bugzilla database taken in August 2008. All change requests

reported for the selected Eclipse components in the considered
time periods since November 2001 contained valid historic

entries.

Mining the Jazz data with BugzillaMetrics required a
preparatory data extraction step. We extracted the data from the

Jazz server using a program that accessed both the Jazz API and

the Jazz database. We stored the extracted data in a separate
database. This separate database was analyzed using

BugzillaMetrics. This data preparation step was necessary for an

efficient analysis of the Jazz work item data using
BugzillaMetrics. Due to inconsistencies in the underlying Jazz

database, extracting the history was not possible for 63 work

items (out of 47,669 work items, 0.13%).

Comparability of Work Items in Jazz and Eclipse. In order

to draw comparisons between the handling of work items in Jazz

and Eclipse, it must be considered whether the work items in the
selected components of both projects are comparable in terms of

size and complexity.

Unfortunately, this analysis cannot be based simply on an
attribute of the work items. Eclipse does not collect effort values

for the work items. It was shown in a case study of the Eclipse

project that severity and priority are poor indicators of the
complexity of a work item [11], as not every reporter is capable of

using the given severity classifications, and developers do not use
priorities in a consistent manner.

However, we believe that the work items for the selected

components are comparable for a number of reasons. We selected
components with similar development topics for both projects.

6 http://www.bugzillametrics.org

Moreover, a considerable number of Jazz developers had been

former developers of Eclipse. Due to this personnel continuity, we
assume that there is a common understanding of the usage scheme

of the issue tracking system by team and project members.

The resolution categories can be inspected with respect to the
work items reported by community members. The resolution

Fixed indicates that some change of the source code had been

made related to the work item. For the analyzed Eclipse
components, the proportion of community work items with

resolution Fixed ranges from 36.5% to 47.2%, while for the Jazz

components, the proportion ranges from 36.1% to 70.0%. We
could not detect any significant difference, t(3)=1.09, p=.33.

Similar ranges in both Jazz and Eclipse can also be observed for

other resolution categories like Invalid or Duplicate.

Relationship between Research Questions and

Methodology. To answer our first two research questions

regarding the degree of community involvement in issue tracking
in both Eclipse and Jazz, we compared the absolute and relative

numbers of created work items and comments for the different

components, time periods and community roles, normalized per
month. We also compared the number of distinct individuals who

were active in the issue trackers, again split by time period,
component and community role. Furthermore, we looked at the

average number of created work items and comments per active

individual. We again compared between the different components,
time periods and roles, normalized per month.

Besides the community involvement in change request

management, we also investigated the processing differences and
similarities between work items created by community, project

and team members (Research Question 3). In particular, we

examined if there are differences in the amount of communication,
in the reopened rate, and in the assignment and processing speed.

We evaluated the following three measurements with that goal in

mind:

1. The number of reopened work items relative to the number

of resolved work items (reopened rate).

2. The median age in days when a work item is resolved for the
first time (resolution age).

3. The percentage of work items still unassigned 7 days after

being created.

For each of the three measurements, the work items were

divided into work items created by community members, work
items created by project members, and work items created by team

members. The measurements were then carried out for the four

evaluated Jazz projects. For number of comments and median age
of resolution, we also measured the corresponding Eclipse

projects to get a frame of reference.

4. RESULTS

4.1 What is the degree of community

involvement in issue tracking in the open

commercial project Jazz?
Metric results related to the community involvement in the

selected Jazz components are given in Table 1. The Source

Control (SC) and Work Item (WI) components are the Jazz

components with the most issue tracking activity of the four
evaluated components. They have over 1.5 times more created

work items and about 2-3 times more comments than the smallest

of the evaluated Jazz components, the Process (P) component. P

also exhibits the lowest absolute community activity in issue

tracking. Most community comments per month (78.8) were made
in the Repository (R) component, and most community work

items were created in the WI component. Table 1(a) shows the

average number of work item that were created per month, split
into community, project and team member created work items.

Table 1(b) shows a similar table for the average number

comments per month.

Table 1: Metrics calculated on Jazz components

 WI SC P R

Community 30.5 24.8 10.3 25.6

Project 138.6 106.4 92.4 64.8

Team 244.2 268.1 152.8 116.7

(a) average number of created work items per month

 WI SC P R

Community 40.7 50.6 14.9 78.7

Project 240.4 226.8 163.4 215.9

Team 773.4 1294.8 396.1 563.3

(b) average number of comments per month

 WI SC P R

Community 150 116 90 139

Project 108 105 97 88

Team 16 12 9 23

(c) number of active contributors

 WI SC P R

Community 0.20 0.21 0.11 0.18

Project 1.28 1.01 0.95 0.74

Team 15.26 22.34 16.98 5.08

(d) average number of created work items per month and active

contributor

 WI SC P R

Community 0.27 0.44 0.17 0.57

Project 2.23 2.15 1.68 2.45

Team 48.34 107.90 44.01 24.49

(e) average number of comments per month and active contributor

The results for the distribution of issue tracking activity
between team, project and community members indicate that the

community share in work item creation is significantly lower than

the share of team and project members (see Figure 1; Paired t-
tests: community vs. team: t(3)=-14.78,p<0.01; community vs.

project: t(3)=-8.06,p<0.01). Similarly, the community share in

commenting is significantly lower (see Figure 2; Paired t-tests:
community vs. team: t(3)=-14.52,p<.01; community vs. project:

t(3)=-5.91,p<.01). In detail, the community involvement was 4-

12% in work item creation and 2-9% in commenting. Team
members dominate the work item creation (56-67%) and

contribute the most comments (65-82%).

Community members are the biggest group of distinct active
people in issue tracking. For two of the evaluated Jazz

components (SC and P), the number of active community
members is similar to the number of active project members. For

the others, about 1.5 times as many community members are

active as project members. When we summarize over all four
evaluated Jazz components, the number of active community

members is twice as large as the number of active project

members, because project members are more likely to contribute
work items and comments to several components. The number of

active team members is much lower. In terms of shares,

community members are about 45-60% of the active issue

tracking contributors, project members are about 28-50% and
team members are between 4-10% (including summarized results

of all 4 components).

The average community member contributes less comments
(paired t-tests: community vs. team: t(3)=-4.08,p=.0265;

community vs. project: t(3)=-7.56,p<.01) and work items

(community vs. team: t(3)=-3.31,p=.0454; community vs. project:
t(3)=-18.19,p<.01) compared to project and team members. Team

members are the most active contributors, both in terms of created

work items and in terms of commenting. They contribute between
25-155 times as many work items as community members, and

between 7-22 times as many work items as project members.

Team members contribute between 42-265 times as many
comments as community members and between 10-50 times as

many as project members. Table 1(d) shows the number of work

items per month and active contributor, split by community,
project and team members. Table 1(e) shows the comments.

4.2 Is there a similar degree of community

involvement in Eclipse and Jazz?

The metric results for the selected projects of Eclipse are given

in Table 2. The three evaluated Eclipse projects exhibit large

differences in absolute issue tracking activity as well as in
community issue tracking activity.

Figure 1: Distribution of reporters by community role.

Figure 2. Distribution of comments by community role

Figure 3. Distribution of people active by community role

 Dec. ‘01 – Jun. ‘02 Dec. ’01 – Jun. ‘03

 PDE JDT CDT PDE JDT CDT

Community 21.0 201.1 1.4 20.7 227.2 12.7

Project 54.9 205.4 38,4 41.9 128.2 15.0

Team 35.4 409.3 4.4 30.8 293.0 10.5

(a) Average number of created work items per month

 Dec. ‘01 – Jun. ‘02 Dec. ’01 – Jun. ‘03

 PDE JDT CDT PDE JDT CDT

Community 69.3 649.6 6.0 60.1 681.3 38.3

Project 239.6 903.6 193.1 158.4 546.4 73.1

Team 527.4 5956.1 36.7 405.1 4102.3 82.4

(b) Average number of comments per month

 Dec. ‘01 – Jun. ‘02 Dec. ’01 – Jun. ‘03

 PDE JDT CDT PDE JDT CDT

Community 41 469 6 164 1409 94

Project 85 147 15 126 252 23

Team 12 27 1 16 30 16

(c) Number of active contributors

 Dec. ‘01 – Jun. ‘02 Dec. ’01 – Jun. ‘03

 PDE JDT CDT PDE JDT CDT

Community 0.51 0.43 0.24 0.13 0.16 0.14

Project 0.65 1.40 2.56 0.33 0.51 0.65

Team 2.95 15.16 4.43 1.92 9.77 0.66

(d) Average number of created work items and active contributor

 Dec. ‘01 – Jun. ‘02 Dec. ’01 – Jun. ‘03

 PDE JDT CDT PDE JDT CDT

Community 1.7 1.4 1.0 0.4 0.5 0.4

Project 2.8 6.2 12.9 1.3 2.2 3.2

Team 43.9 220.6 36.7 25.3 136.7 5.2

(e) Average number of comments per month and active contributor

Table 2: Metrics calculated for Eclipse components

Although the results for the distribution of issue tracking

activity between team, project and community members seem to
indicate that the community share in work item creation and

commenting is lower than the share of team and project members

(see Tables 2(a) and 2(b)), we could not detect a statistically
significant effect. This might have been due to the low number of

components and the high variance that stems from the results for

CDT. The relative community involvement in issue tracking
seems to increase when comparing the time interval until June

2002 to the time interval until June 2003 (see Figures 1 and 2). In

detail, the community involvement increased from 18-25% to 22-
35% in work item creation, and from 8% to 9-13% in

commenting. However, these differences are not statistically

significant. The rest of the work item creation is split fairly evenly
between team members (25-50%) and project members (20-50%),

whereas the team members contribute the most comments (60-

80%).
A large number of community members contribute to issue

tracking in Eclipse (see Table 2(c)), compared to a small number

of team members and an intermediate number of project members.
The community share of distinct people active in issue tracking

increases from 25-73% for the time interval until June 2002 to 53-

84% for the time interval until June 2003. This might be caused
by a substantial increase of the Eclipse user base during this

period.
We could not find any significant differences between the

Eclipse and Jazz components with regards to the community share

in commenting. For work item reporting, the community share
was significantly lower in the Jazz components compared to the

Eclipse components for Dec’01 – Jun’03, t(2)=-5.15, p=0.0168.

However, there was no evidence of this effect when comparing
the Jazz components to the Eclipse components for Dec’01-

Jun’02, t(2)=-1.22,p=.3388.

Also, in Eclipse projects community members contribute
relatively more work items than comments for Dec’01-Jun’03

(t(2)=5.30, p=.03376), whereas such a difference cannot be

observed for the Eclipse components during the time period from
Dec’01-Jun’02 (t(2)-2.03, p=.1793). Jazz community members

also contribute relatively more work items than comments

(t(3)=5.91,p<.01). The data for the Jazz components regarding
user distribution are similar to the evaluated Eclipse components.

Except for the Process component, the community is the largest

group of active issue tracking users.

4.3 Are Work Items created by non-project

members processed differently in the open

commercial project Jazz?
We found that work items created by community members

typically involve more communication than work items created by
team members and they are resolved more slowly. Work items

created by community members are also more likely to be

unassigned after 7 days.
There is more communication on work items created by project

and community members compared to work items created by team

members (see Table 3(a)). We did a Wilcoxon rank sum test with
continuity correction for each pair of different reporter groups in

each Jazz component. We found significant differences (p < 0.01)

in the community/team and project/team pairs.
No significant differences between the different reporter groups

have been detected for the percentage of reopened work items.

 Table 3: Work item processing in Jazz components

 WI SC P R

Community 3.44 4.49 4.73 5.13

Project 3.42 4.61 3.02 5.70

Team 2.42 3.70 2.11 3.43

(a) Average number of comments for resolved, verified and

closed work items divided by reporter and Jazz component

 WI SC P R

Community 38.76 5.82 23.05 14.39

Project 6.09 3.43 3.34 5.88

Team 5.93 4.86 3.96 5.88

(b) Median age in days at resolution divided by reporter and

Jazz component

 WI SC P R

Community 16.58 6.78 32.31 12.11

Project 9.79 7.08 19.49 11.17

Team 6.92 2.55 21.35 8.39

(c) % of work items that are unassigned 7 days after creation

Figure 4: Percentage of comments from community members

in the 4 Jazz components over time.

Figure 5: Percentage of unassigned work items in the 4 Jazz

components for the first 14 days after creation

We applied a chi-square test to the different reporter groups
and reopened vs. not-reopened work items. Work items reported

by community members in Jazz were resolved slower than other

work items (see Table 3(b)). We did a Wilcoxon rank sum test
with continuity correction for each pair of different reporter

groups in each Jazz component, as well as on the community

reported work items vs. the other work items. There are significant
differences between the work items reported by community

members and both the work items created by team and project

members (p < 0.02).
The work items created by community members are more likely

to be unassigned 7 days after they have been created (see Table

3(c)). We divided the work items based on their assignment status
after 7 days into assigned and unassigned, and by their reporter

groups (community, project, team). We then applied a chi-square

test to the number of work items in the 6 buckets. This showed
that the distribution was not due to chance (p < 0.01).

5. DISCUSSION
This paper has two main contributions. First, we investigated

community involvement in issue tracking in open commercial

development. Second, we explored the differences in work item

processing in open commercial development between non-
developer and developer work items. The following discussion

elaborates those contributions and their implications.

Community involvement in issue tracking. Both the Jazz and
Eclipse projects have been able to attract considerable

participation of the community in issue tracking. However, the

community work item reporting in the Jazz components is
significantly lower than in the Eclipse components for Dec’01-

Jun’03. The difference in work item creation can be explained by

the fact that there was no Jazz Release until June 2008, and thus
post-release defects that are found by community members are

missing. This hypothesis is also supported by the fact that such a

difference between Jazz and Eclipse could not be observed before
the first Eclipse release.

For Eclipse, an increase of the relative community involvement
in work item reporting and commenting could be observed when

comparing the time periods from December 2001 until June 2002

and from December 2001 until June 2003. It is not clear if such an
increase had also happened in Jazz after its first release. For the

time between December 2006 and June 2008, an increase of

community involvement in Jazz could not be observed (compare
Figure 4). The community involvement could be influenced by

how the team reacts on user contributions. Hence, we analyzed

how work items contributed by community members are
processed.

Differences in work item processing depended on reporter

group. We found that the community status of the reporter
influences how much communication there is on work items, how

fast they are resolved, and how long they stay unassigned.

Work items created by community and project members have
significantly more comments on the average than work items

reported by team members. One hypothesis that could explain this

is that team members create small work items for themselves,
which do not have any discussion. To further investigate this idea,

we measured the percentage of work items that were fixed without
any comments, split by the different author groups. We found that

the number of work items that were resolved without comments

was between 6 and 14 percent higher for work items created by
team members compared to work items created by community

members. However, when we restricted the measurement of the

number of comments to work items with the resolution Fixed and
with at least one comment, the differences in number of comments

still prevailed. Compared to Eclipse, the average number of

comments per work item in Jazz is much lower. In the evaluated
Eclipse components, the average ranges between 6.4 and 10.2 for

the same reporter groups.

We also found that work items created by community members
are more likely to be unassigned after 7 days. This could be

explained by the awareness of the project and team members who

could work on a work item. We further investigated how the
percentage of unassigned work items changes over the first 14

days in the evaluated Jazz components (see Figure 5). The work

items created by project and community members are more likely
to be unassigned in the beginning, and although the difference

between these and work items created by team members gets

lower over time, the work items created by team members are
always more likely to be assigned. This supports the hypotheses

that this difference is due to whether the work items are assigned

on creation or not, which is more likely for work items created by
team members because they are aware who could work on a

specific work item.

We also found significant differences in the age at resolution
between work items created by community members and work

items created by team and project members. These could be due to
differences in granularity of the work items. However, we also

found no significant differences in the reopening rate between

community and other work items. This measurement was not
applicable for Eclipse, because work items cannot be unassigned

in the Eclipse Bugzilla. A possible alternative, using the work

item state “assigned” in Eclipse, is not comparable because the
owner has to accept a bug manually, which is different from Jazz.

6. LIMITATIONS
Eclipse and Jazz are two different projects and thus there are

limitations in their comparison. We selected the components and
time periods in a way that many of those problems such as major

differences in team size, component age, and type of software

system were mitigated. Moreover, threats to validity can be
caused by different usage schemes of the issue tracking system.

However, a considerable number of Jazz developers were former

Eclipse developers. Thus, we can assume at least some common
understanding of the usage scheme.

We looked at the early stages of IDE development projects. Our

results apply to this specific domain and it is difficult to
generalize them beyond it. The work item data for Eclipse from

December 2001 to June 2003 was compared to work item data for

Jazz from December 2006 to June 2008. Eclipse became open
source with the release of version 1.0. For Jazz, the first release

was IBM Rational Team Concert in June 2008. The public

availability of an Eclipse release could have influenced the
likelihood of finding defects by the community, which could have

impacted the community involvement in issue tracking.

The assignment of people to the community, project and team
groups is not exact. For Jazz, we distinguished between team,

project and community members based on their current team

assignment. This does not necessarily reflect past team or project
assignment, as people could have switched between teams or

could have left the project. For Eclipse, we used the IBM and
OTI email addresses to distinguish between project and

community members, because a complete reconstruction of the

project members was not feasible. This could mean that we

included people who were not active in the Eclipse project, and it
could also mean that we excluded project members who were not

using an IBM or OTI email address.

7. CONCLUSION
While both the Eclipse and Jazz projects have attracted

significant contributions from the community, our results indicate

that there is a lower community work item reporting in Jazz

compared to Eclipse. Work items created by community members
are processed differently from work items created by team

members in Jazz.

Possible future work could investigate these issues in detail,
e.g. using interviews or observational field studies. Looking at the

quality of work items and at other community involvement

artifacts such as newsgroups might be worthwhile. Studying these
issues could shed further light on how user communities engage

in issue tracking.

8. ACKNOWLEDGMENTS
We would like to thank the members of the CHISEL group and

the reviewers for all the helpful comments and editing

suggestions. This work was funded by IBM CAS Canada.

9. REFERENCES
[1] R. Bagozzi and U. Dholakia. Open source software user

communities: A study of participation in linux user groups.
Management Science, 52(7), 2006.

[2] N. Bettenburg, S. Just, A. Schröter, C. Weiss, R. Premraj,

and T. Zimmermann. What makes a good bug report? In
SIGSOFT ’08/FSE-16, pp. 308–318, ACM, NY, 2008.

[3] C. Bird, D. Pattison, R. D’Souza, V. Filkov, and P.

Devanbu. Latent social structure in open source projects. In

SIGSOFT ’08/FSE-16, pp. 24–35, ACM, New York, 2008.

[4] M. Burke et al. Eclipse technology exchange workshop. In

OOPSLA ’06, ACM, New York, 2006.

[5] Li-Te Cheng, Alessandro Orso, and Martin P. Robillard,
editors. Proc. of the 2007 OOPSLA workshop on Eclipse

Technology eXchange, ETX 2007, Montreal, Canada, 2007.

[6] Nicolas Ducheneaut. Socialization in an open source

software community: A socio-technical analysis. Comput.
Supported Coop. Work, 14(4):323–368, 2005.

[7] Randall Frost. Jazz and the Eclipse Way of Collaboration.

IEEE Software, 24(06):114–117, 2007.

[8] E. Gamma. Agile, open source, distributed, and on-time –

inside the eclipse development process. Keynote Talk, ICSE

2005, St.Louis, Missouri, 2005.

[9] L. Grammel, H. Schackmann, and H. Lichter.

Bugzillametrics: an adaptable tool for evaluating metric

specifications on change requests. In IWPSE ’07, pages 35–
38, ACM, New York, 2007.

[10] David G. Hendry. Public participation in proprietary

software development through user roles and discourse.
International Journal of Human-Computer Studies, 7, 2008.

[11] I. Herraiz, D. Germán, J. González-Barahona, and G. Robles.

Towards a simplification of the bug report form in eclipse. In

Ahmed E. Hassan, Michele Lanza, and Michael W. Godfrey,

editors, MSR, pages 145–148. ACM, 2008.

[12] P. Hooimeijer and W. Weimer. Modeling bug report quality.
In ASE ’07, pp. 34–43, ACM, New York, NY, USA, 2007.

[13] N. Iivari. Empowering the users? a critical textual analysis of

the role of users in open source software development. AI
SOCIETY, 23:511–528(18), July 2009.

[14] T. Kakimoto, Y. Kamei, M. Ohira, and K.-I. Matsumoto.

Social network analysis on communications for knowledge
collaboration in oss communities. In Second intl. Workshop

on Supporting Knowledge Collaboration in Software

Development, Tokyo, Japan, September 2006.

[15] A. Ko and P. Chilana. How power users help and hinder

open bug reporting. In CHI ’10, pages 1665–1674, ACM,

New York, NY, USA, 2010.

[16] A. Mockus, R. Fielding, and J. Herbsleb. Two case studies of
open source software development: Apache and mozilla.

ACM Trans. Softw. Eng. Methodol., 11(3):309–346, 2002.

[17] K. Nakakoji, Y. Yamamoto, Y. Nishinaka, K. Kishida, and
Y. Ye. Evolution patterns of open-source software systems

and communities. In IWPSE ’02, pp. 76–85, ACM, New

York, USA, 2002.

[18] E. Raymond. The Cathedral and the Bazaar: Musings on

Linux and Open Source by an Accidental Revolutionary

(O’Reilly Linux). O’Reilly, October 1999.

[19] R. Sandusky. Software Problem Management as Information

Management in a F/OSS Development Community. In

Proceedings of the First International Conference on Open

Source Systems, pages 44–49, 2005.

[20] H. Schackmann and H. Lichter. Comparison of process

quality characteristics based on change request data. In
IWSM/Metrikon/Mensura, volume 5338 of Lecture Notes in

Computer Science, pages 127–140. Springer, 2008.

[21] V. Singh, M. Twidale, and D. Nichols. Users of open source

software - how do they get help? Hawaii International
Conference on System Sciences, 2009.

[22] D.W. van Liere. How Shallow is a Bug? Why Open Source

Communities Shorten the Repair Time of Software Defects.
ICIS 2009 Proceedings, 2009.

[23] A.I. Wasserman and E. Capra. Evaluating software

engineering processes in commercial and community open
source projects. Emerging Trends in FLOSS Research and

Development, May 2007.

[24] M. Weiss, G. Moroiu, and P. Zhao. Evolution of open source
communities. In OSS, volume 203 of IFIP, pp. 21–32.

Springer, 2006.

[25] Y. Ye and K. Kishida. Toward an understanding of the

motivation open source software developers. In ICSE ’03,
pp. 419–429, IEEE, Washington, DC, USA, 2003.

