
An End User Perspective on Mashup Makers

Lars Grammel1 and Margaret-Anne Storey1

Computer Human Interaction and Software Engineering Lab,
University of Victoria, Victoria, BC, Canada,

{lgrammel,mstorey}@uvic.ca,
http://www.thechiselgroup.org

University of Victoria Technical Report DCS-324-IR, September 2008

Abstract. This paper presents a review of six mashup makers from an
End User Development (EUD) perspective. The fast-paced development
of mashup makers and related research in the last two years has created
a wealth of features and approaches. To provide an overview of EUD sup-
port in current state-of-the art mashup makers, we explore, summarize
and compare their features across six different themes (Levels of Abstrac-
tion, Learning Support, Community Support, Searchability, UI Design
and Software Engineering Techniques). We found that the mashup mak-
ers provide many features to support end users, but there is still much
room for further improvement. These results can be used to guide both
research and tool design. User studies that reveal the difficulties in using
mashup makers and comparisons of different notations are likely to be
especially fruitful research opportunities.

1 Introduction

Mashups are applications that reuse and combine data and services available on
the web. They are developed in a rapid, ad-hoc manner to automate processes
and remix information. This enables users to explore information in new ways
and saves valuable time that may be lost in laborious routine tasks.

Mashup development is a promising End User Development (EUD) applica-
tion area for several reasons. The web as the underlying platform provides access
to a growing number of publicly available services. By using such services, the
development effort shifts from traditional programming towards finding high-
level services [1], glueing these services together [1] and creating User Interfaces
(UIs). These activities involve less technical details than programming, are po-
tentially closer to the problem domain and can be supported better by tools
because they are more restricted. The shift towards a development model based
on composition is in line with a shift towards rapid, opportunistic development
of situated applications with short lifespans aimed at small audiences [1]. This
style of development provides direct rewards for the users and avoids difficult
technological challenges such as scalability. Furthermore, the web as a platform
facilitates sharing mashups and community building.



Mashup makers are development environments for mashups. Since 2006, sev-
eral commercial mashup makers with a focus on end users, web developers and
business users such as Microsoft Popfly, Yahoo! Pipes and IBM Mashup Center
have been created. At the same time, research on mashups and mashup makers
started. Since then, both mashup research and tools have developed rapidly and
many features have been explored. Our goal in this paper is to compare how
these techniques support end users in developing mashups. As far as we know,
this aspect of mashup makers has not been evaluated yet in a similar way before.

The rest of the report is structured as follows: first, an overview of the back-
ground and related work is given. Second, the methodology of this review is
described. Third, the results are presented, and fourth, implications and con-
nections to other EUD research are discussed. Fifth, we describe the limitations
of this work and what we have done to alleviate them. Finally, we conclude the
paper with a summary of our contributions and possibilities for future work.

2 Background and Related Work

Constant changes in usage culture and the evolution of the web make mashup
definition challenging. The original definition of mashups refers to web-based
applications that mix two or more different web-based data sources [2, 3] and
reflects the ideas of remixing services and using the web as the underlying plat-
form. The scope of this definition has been broadened by several authors [1, 4]
to different devices and environments. Rapid development, situated applications
and end user focus can be considered central concepts to mashups as well [5].

For this review, mashups are defined as end user driven recombination of web-
based data and functionality. This definition is close to the original definition and
also emphasizes our end user viewpoint. It is less restrictive than the original
definition because it does not require that mashups are web applications. Mashup
makers then are tools that support users in the development of mashups.

The related research comes from three research areas: Research on mashups,
research on web page customizations and research on EUD in general.

Research on mashups has focussed mostly on tools and methods to sup-
port mashup development. Marmite [6] combines a visual data-flow language
with incremental execution and preview of intermediate results. Karma [7] is a
programming-by-example system that integrates data retrieval, modeling, clean-
ing, and integration. D.mix [3] supports automatic website-to-webservice map-
ping and combines selecting service samples from websites with remixing them
in a wiki. C3W [8] combines programming-by-example methods for extracting
actions from web pages with the spreadsheet paradigm. Through other research
on mashups, researchers have explored patterns in mashups [4], the background
and experiences of mashup developers [2], and the activity of mashup design [1].

Research on web page customization focuses on modifying and personaliz-
ing existing web pages instead of creating new ones. Chickenfoot is such a tool
for customizing web pages by scripts that run in the browser [9]. It extends the



browsers basic scripting language with special commands for web site customiza-
tion, especially selecting elements from a web page based on visible patterns.

There is a large body of literature on general EUD research. Several introduc-
tions, overviews and books are available (e.g. [10–14]). The concept of a gentle
slope of complexity [15] and the model of different barriers in programming
systems [16] are especially relevant for this review of mashup makers. Creating
systems with a gentle slope of complexity is the concept of allowing the user
to learn new functionality step-by-step, without requiring major learning efforts
without immediate results [15]. Ko et al. identified six types of learning barriers
(design, selection, coordination, use, understanding, and information barriers)
by studying how non-programmers learned VisualBasic using Visual Studio [16].

3 Methodology

The objective of this paper is to discover, organize and summarize the features
and approaches of current mashup makers from an EUD perspective. Our re-
search methodology is a qualitative, exploratory tool analysis.

Six mashup makers developed by major companies such as Microsoft, IBM
and Google are reviewed (see Table 1). We group them by the kind of mashup
they can generate. Information mashups retrieve data from one or several
data sources, process that data, and publish the results either as feeds or in wid-
gets. Process mashups automate processes by orchestrating services, forms
and other resources in a workflow and often include data entry. Web page cus-
tomizations change websites by removing elements, adding additional widgets
and changing the UIs of websites.

Each reviewed mashup maker was used and evaluated for about three to six
hours. During the evaluation, mashups were created, the different parts of the
system were explored and used, and related documentation and tutorials were
read. Features relevant to the themes were added to a feature matrix (see Table
2) as they were discovered during this evaluation.

We have chosen to structure the review by six themes. These themes emerge
from our research on EUD (EUD) [10–16], mashup (MASH ) [1, 2, 4, 5] and
mashup maker research (MM ) [3, 6–9, 17, 18], and from our previous experience
with mashup makers (EXP), as indicated by the abbreviations for each theme
below. The themes are used to guide the tool evaluations. Each theme has one
or more guiding questions.

– Levels of Abstraction (EUD, MASH, EXP). What levels of abstraction
are supported? Which notations are used on the different levels of abstrac-
tion? How are they integrated?

– Learning Support (EUD, MASH, MM ). What documentation is avail-
able? What support besides the documentation is provided? How is the con-
cept of a gentle slope of complexity supported? What barriers in working
with the mashup maker exist?

– Community Features (EUD, EXP). How do mashup makers support col-
laboration between the users?



– Searchability (MASH, MM ). Which features help the users in finding rel-
evant mashups and mashup elements?

– UI Design (EXP). How are users supported in creating mashup UIs?
– Software engineering techniques (EUD). What debugging support is

provided by the mashup makers? What testing features do they offer? Is
version control available?

4 Results

The results are presented according to the evaluation themes. A summary of the
features in the mashup makers is given in Table 2. Please note that the focus
of this paper lies on summarizing the approaches in mashup makers and not on
recommending the best mashup makers.

4.1 Levels of Abstraction

Three different levels of abstraction are used to distinguish how much program-
ming and computer knowledge is required. There is a tradeoff between the re-
quired knowledge and the range of solutions that can be developed [15]. Since
raising the level of abstraction requires encapsulating concepts, the number of
choices available on higher levels of abstraction is usually restricted.

On a high level of abstraction, no programming knowledge is required, but
the flexibility is usually restricted to reusing and parametrizing mashups which
are developed by others. Working with a high level of abstraction is supported
by the reviewed mashup makers in several ways: reuse of complete mashups cre-
ated by others, high-level mashup and widget parametrization, automatic reuse
of data extractors for websites, and programming-by-example concepts, such as
extracting data by example and dragging & dropping feeds on widgets.

On an intermediate level of abstraction, knowledge about concepts such
as dataflow, data types or UI widgets is required, but the technological details
of these concepts are encapsulated in notations. Thus what can be changed or
created is limited by these notations. The reviewed mashup makers support
mashup development on an intermediate level of abstraction mainly using visual
Domain Specific Languages (DSLs). Visual dataflow languages help the users
in the creation of information mashups. Visual workflow/process orchestration
languages support the creation of process mashups. The visual languages are
used in combination with property dialogs for the parametrization of mashup
elements. Data sources are mostly accessed through mashup elements in those
notations. Dialog-based wiring of widgets provides an alternative to visual data-
flow languages that saves screenspace, but depends on visual widgets. On an
intermediate level of abstraction, there is typically a distinction between design
and runtime mode, although the mashup makers try to reduce this disinction,
e.g. using previews.

On a low level of abstraction, programming knowledge is required, but the
greatest flexibility is achieved. Textual DSL editors for languages such as HTML,



Table 1. Reviewed Mashup Makers

Mashup Makers for Information Mashups

Microsoft Popfly (MP) http://www.popfly.com

Yahoo! Pipes (YP) http://pipes.yahoo.com

IBM Mashup Center (IMC) http://www.ibm.com/software/info/mashup-center/

Google Mashup Editor (GME) http://editor.googlemashups.com/editor

Mashup Makers for Process Mashups

Serena Mashup Composer (SMC) http://www.serena.com/Mashups/

Mashup Makers for Web Site Customization

Intel MashMaker (IMM) http://mashmaker.intel.com/web/

Table 2. Features of Reviewed Mashup Makers (Duplicate features in italics)

Feature MP YP IMC GME SMC IMM

Reuse of Complete Mashups
√ √ √ √ √ √

Mashup and Widget Parametrization
√ √

Automatic Reuse of Data Extractors
√

Programming-By-Example
√ √

Visual Dataflow Languages
√ √ √

Vis. Workflow/Process Orchestration Languages
√

Dialog-based Wiring of Widgets
√

Textual DSL Editors
√ √ √

Textual DSLs in Dialog Fields
√ √ √ √ √

Extension APIs
√ √ √ √

Integration of Different Abstraction Levels
√ √ √ √

Tutorials, Help, API Documentation
√ √ √ √ √ √

Discussion Forums
√ √ √ √ √

Using Shared Artifacts as Examples
√ √ √ √ √ √

Context-Specific Suggestions
√

Sharing Mashups
√ √ √ √ √ √

Sharing Mashup Elements
√ √ √ √ √

Tagging
√ √ √

Rating
√ √ √ √

Discussion Forums
√ √ √ √ √

Artifact-Centered Discussion
√ √

Social Networks
√

Text-Based Search
√ √ √

Browsing Mashups by Structural Properties
√

Simple Categorization of Mashup Elements
√ √ √ √

Context-Specific Suggestions
√

Automatical UI Generation
√ √

Selecting & customizing UI
√

Visual UI composition
√ √ √

Textual UI composition
√

Debugging Output
√ √ √

Version Control
√ √



JavaScript and custom scripting languages are used to represent mashups or el-
ements of mashups on this level of abstraction. Textual DSLs in dialog fields
such as regular expressions enable the flexible configuration of mashup element
properties. Providing extension APIs allows developers to use integrated devel-
opment environments such as Microsoft Visual Studio for programming reusable
mashup elements.

Due to the tradeoff between the level of abstraction and flexibility in de-
signing mashups, the integration of different abstraction levels provides
several benefits. Having several abstraction levels allows the user to choose the
right level of abstraction for his goal and his skill. It also positively affects the
ease of learning the functionality of a system by offering a gentle slope of com-
plexity, and it enables reuse of elements from lower levels of abstraction in higher
levels of abstraction.

4.2 Learning Support

Supporting the user in learning to master an EUD system, especially by provid-
ing a gentle slope of complexity [15], is a crucial aspect of EUD [14]. Besides the
different levels of abstraction and their integration, several other mechanisms are
provided by mashup makers to aid users in their learning. Basic learning fea-
tures such as screencasts and tutorials, API documentation and a help system
that explains the UI are provided by all reviewed mashup makers. Community
based learning support is provided in discussion forums and through using
shared artifacts as examples. Context-specific suggestions offer the user hints
on which mashup elements might be useful based on the current structure of the
mashups.

4.3 Community Features

Supporting user communities is essential to the success of EUD tools [10]. Com-
munity members provide elements that can be reused by other members, create
examples, organize artifacts, and help each other.

Facilities for sharing mashups and mashup elements enable the reuse of those
artifacts within the community. The shared mashups can be run and copied to
their workspaces for modification by other users. Sharing of mashup elements,
e.g. building blocks in MP or feeds in IMC, for reuse on higher or the same
abstraction levels provides further areas of reuse.

Collaborative categorization of user-generated mashups and mashup el-
ements helps community members in finding the mashups and mashup elements
they search. Tagging is a categorization technique in which users, typically the
authors, annotate items with keywords called tags to support finding. Rating is
used in different flavors such as favorites, star-rating, clone-counting and user rec-
ommendations to help the user in judging the quality and usefulness of mashups
and mashup elements.



Providing discussion features such as general dicussion forums and artifact-
centered discussion, e.g. comments on a mashup element, enables the users to ex-
change ideas, help each other and build a sense of community. Artifact-centered
discussions are also a valueable feedback mechanism for the authors and help
users in judging the quality and usefulness of an artifact.

Social network systems such as Facebook have gained popularity over
the last couple of years. In mashup makers, social networks help users to find
mashups created by friends, and likely increase the commitment of users to a
mashup maker by creating a stronger sense of community.

4.4 Searchability

Searching and finding mashups and mashup elements enable users to employ
artifacts created by others. Text-based search on title, description and assigned
tags is the most common mechanism for finding mashups and mashup elements.
The results often include the artifact rating and can be sorted by it. Browsing
mashups by structural properties such as used mashup elements helps users in
finding examples for their own mashup. In visual data-flow editors, a one layer
deep categorization of mashup elements supports users in finding the right ele-
ments. Context-specific suggestions can provide the needed elements to the user
without requiring him to search. Using discussion features, other users can also
point out relevant building blocks and example mashups based on questions.

4.5 UI Design

The mashup UIs determine the usability of the mashups. It is therefore impor-
tant that end users can easily create appropriate UIs for their mashups. The
mashup makers provide several different mechanisms for UI design. Automati-
cally generating the UI based on the output data of the mashup, e.g. map viewers
or image lists, is a convenient way for rapid UI generation, but lacks customiz-
ability. Selecting and customizing (MP) a single UI component provides more,
although still limited, flexibility. The most flexible approach is UI composition,
either visual or textual. It enables users to customize UIs to a great extent, but
is more complicated than the other approaches.

4.6 Software Engineering Techniques

Given the concerns regarding security and correctness of applications devel-
oped by non-programmers [19], providing software engineering techniques for
end-users is considered important in the EUD field [12]. Debugging is only
supported through consoles that print debugging output. Version control is
rather simple and does not contain advanced functions like branching. Testing
and change request management are not supported by any reviewed mashup
maker.



5 Discussion

The reviewed mashup makers have many features that improve usability and
learnability. Their support for online communities is especially good. However,
there are several potential areas of improvement and future research.

Although the mashup makers provide many notations for different tasks and
different complexity levels, as well as a variety of learning support features, high
learning barriers still remain, especially between different levels of abstraction
and different notations. These barriers can be lowered by including more spe-
cialized, intermediate notations [15], as for example in MP and IMC.

Further research is required to compare different notations for the same tasks,
e.g. visual dataflow languages vs. dialog-based wiring. Evaluation frameworks
such as the Cognitive Dimensions of Notations [20] can be used to analyze the
strengths and weaknesses of such notations, and formal user studies can compare
how users perform on the same tasks using different notations.

Evaluating mashup makers according to the model of six types of barriers
in end user programming systems by Ko et al. [16] can be used to identify the
areas that need most improvement, as well as typical problems users encounter
in developing mashups. This form of evaluation can be done via user studies.

An interesting feature that could suppport learning and finding is context-
specific suggestions. It is not clear to what extent such suggestions are used, how
they fit the needs of the users, nor what their limitations are.

Programming-by-example [11] is used successfully for website data extraction
[3, 8], data transformations and filtering [7], as well as for drag & drop gestures in
the UI. Using it for other tasks in mashup makers and comparing it to other nota-
tions are important research challenges. For example, programming-by-example
approaches could aid finding of mashups and mashup elements, which is likely
to be a challenge in the future [7].

Regarding UI development, an integration of different design mechanisms,
such as using automatic generation to provide a starting point and then being
able to modify it using a visual form editor, would combine the strengths of the
different approaches. Another important UI improvement is providing a means
for advanced information visualization, which could help to leverage the users
perceptual system and further increase the usability of mashups.

The overall support for software engineering techniques such as testing and
debugging in mashup makers is quite limited. Given the concerns regarding se-
curity and correctness of applications developed by non-programmers [19] and
the growing popularity of mashups, these shortcomings are dangerous, especially
in the context of enterprise mashups. Non-programmer oriented debugging and
testing facilities such as debuggers, test frameworks and assertions are researched
in the area of end user software engineering (e.g. [21, 12]). Applying those con-
cepts to mashup makers could alleviate the dangers of incorrect and unsafe
mashups.



6 Limitations

There are several limitations to the generalizability of this study. Other mashup
makers besides those reviewed here exist, and they may contain additional EUD
features. We have chosen the reviewed mashup makers in order to get a broad,
representative feature set. The mashup makers from major companies are likely
to be advanced, as an initial exploration showed, and we made sure to include
mashup makers for all three different mashup types (information mashups, pro-
cess mashups, and web page customization).

Second, there was no standard way in using the mashup makers during the
evaluation. A stricter evaluation approach like trying to create the same mashup
on all mashup makers was not feasible because of the maturity of the tools and
the differences in their functionality and in the kinds of mashups they generate.

Third, the tool review was conducted in July and August 2008. Because the
reviewed tools are constantly evolving, the reported feature set here might not
reflect their current features.

7 Conclusion

We have presented a review of six mashup makers from an EUD perspective. Six
different themes that emerged from our literature review (Levels of Abstraction,
Learning Support, Community Support, Searchability, UI Design and Software
Engineering Techniques) were used to guide our evaluation. The mashup makers
provide many features to support end users, but there is still much room for
further improvement. The results can be used to guide both research and tool
design. User studies that reveal the difficulties in using mashup makers and
comparisons of different notations are likely to be especially fruitful research
opportunities.

8 Acknowledgements

This research was supported by the IBM Center of Advanced Studies (CAS)
Toronto. We wish to thank Maleh Hernandez, Tricia d’Entremont, Sean Falconer
and Gargi Bougie for their helpful editing suggestions.

References

1. Hartmann, B., Doorley, S., Klemmer, S.: Hacking, Mashing, Gluing: A Study of
Opportunistic Design and Development. Technical report, Stanford HCI Group
(2006)

2. Zang, N., Rosson, M.B., Nasser, V.: Mashups: who? what? why? In: CHI ’08: CHI
’08 extended abstracts on Human factors in computing systems, New York, NY,
USA, ACM (2008) 3171–3176



3. Hartmann, B., Wu, L., Collins, K., Klemmer, S.: Programming by a Sample:
Rapidly Prototyping Web Applications with d. mix. In Proceeding of the 20th
Symp. on User Interface Software and Technology (UIST07). Newport, RI, USA
(2007)

4. Wong, J., Hong, J.: What do we ”mashup” when we make mashups? In: WEUSE
’08: Proceedings of the 4th international workshop on End-user software engineer-
ing, New York, NY, USA, ACM (2008) 35–39

5. Jhingran, A.: Enterprise information mashups: integrating information, simply. In:
VLDB ’06: Proceedings of the 32nd international conference on Very large data
bases, VLDB Endowment (2006) 3–4

6. Wong, J., Hong, J.I.: Making mashups with marmite: towards end-user program-
ming for the web. In: CHI ’07: Proceedings of the SIGCHI conference on Human
factors in computing systems, New York, NY, USA, ACM (2007) 1435–1444

7. Tuchinda, R., Szekely, P., Knoblock, C.: Building Mashups by Example. Proceed-
ings of IUI (2008)

8. Fujima, J., Lunzer, A., Hornbaek, K., Tanaka, Y.: Clip, connect, clone: combining
application elements to build custom interfaces for information access. In: UIST
’04: Proceedings of the 17th annual ACM symposium on User interface software
and technology, New York, NY, USA, ACM (2004) 175–184

9. Bolin, M., Webber, M., Rha, P., Wilson, T., Miller, R.C.: Automation and cus-
tomization of rendered web pages. In: UIST ’05: Proceedings of the 18th annual
ACM symposium on User interface software and technology, New York, NY, USA,
ACM (2005) 163–172

10. Nardi, B.A.: A small matter of programming: perspectives on end user computing.
MIT Press (1993)

11. Lieberman, H., ed.: Your wish is my command: programming by example. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA (2001)

12. Burnett, M., Cook, C., Rothermel, G.: End-user software engineering. Commun.
ACM 47(9) (2004) 53–58

13. Myers, B.A., Ko, A.J., Burnett, M.M.: Invited research overview: end-user pro-
gramming. In: CHI ’06: CHI ’06 extended abstracts on Human factors in computing
systems, New York, NY, USA, ACM (2006) 75–80

14. Wulf, V., Klann, M., Lieberman, H., Paternó, F., eds.: End User Development.
Volume 9 of Human-Computer Interaction Series. Springer Netherlands (2006)

15. MacLean, A., Carter, K., Lövstrand, L., Moran, T.: User-tailorable systems: press-
ing the issues with buttons. Proceedings of the SIGCHI conference on Human
factors in computing systems: Empowering people (1990) 175–182

16. Ko, A.J., Myers, B.A., Aung, H.H.: Six learning barriers in end-user programming
systems. In: VLHCC ’04: Proceedings of the 2004 IEEE Symposium on Visual
Languages - Human Centric Computing, Washington, DC, USA, IEEE Computer
Society (2004) 199–206

17. Ennals, R., Garofalakis, M.: MashMaker: mashups for the masses. Proceedings of
the 2007 ACM SIGMOD international conference on Management of data (2007)
1116–1118

18. Altinel, M., Brown, P., Cline, S., Kartha, R., Louie, E., Markl, V., Mau, L., Ng,
Y.H., Simmen, D., Singh, A.: Damia: a data mashup fabric for intranet applica-
tions. In: VLDB ’07: Proceedings of the 33rd international conference on Very
large data bases, VLDB Endowment (2007) 1370–1373

19. Harrison, W.: From the Editor: The Dangers of End-User Programming. Software,
IEEE 21(4) (2004) 5–7



20. Green, T., Petre, M.: Usability Analysis of Visual Programming Environments: A
Cognitive Dimensions Framework. Journal of Visual Languages and Computing
7(2) (1996) 131–174

21. Ko, A.J., Myers, B.A.: Designing the whyline: a debugging interface for asking
questions about program behavior. In: CHI ’04: Proceedings of the SIGCHI con-
ference on Human factors in computing systems, New York, NY, USA, ACM (2004)
151–158


